Curriculum Map- Maths Year 5

Subject - Maths

Learning Objectives

To read and represent numbers to 100000.

To read and represent numbers to 1000000.

To read and represent numbers to 1000000 using number discs.

To compare numbers to 1000 000 using place value.

To compare numbers to 1000 000 using place value.

To compare numbers to 1000 000 using pictorial representations and proportionality.

To compare numbers to 1000 000 from pictorial representations, using lists and number lines.

To make and identify patterns in numbers using knowledge of place value.

To make number patterns that decrease in multiples of 10000 or 100000.

Knowledge Expectations

To know that numbers can be represented using place value counters

To know each number on the number line has a unique position

To know each two-digit number can be partitioned into a 10 s part and a ones part

To know each three-digit number can be partitioned into a 100s part, 10s part and a ones part

To know that each four-digit number can be partitioned into a 1000 part, 100s part, 10s part and 1s part

To know that each five digit number can be portioned into a 10 000 part, 1000 part, 100 part, 10 part and 1 part.

To understand the 100 s , 10 s and ones structure of 3 digit numbers can be used to support addition

To understand the $1000 \mathrm{~s}, 100 \mathrm{~s}, 10$ s and ones structure of 4 digit numbers can be used to support addition

To understand the $10,000 \mathrm{~s}, 1,000 \mathrm{~s}$, $100 \mathrm{~s}, 10 \mathrm{~s}$ and ones structure of 4
Vocabulary Expectations

Number numeral zero one, two three ... twenty teens numbers, eleven, twelve ... twenty twentyone, twenty-two ... one hundred, two hundred ... one thousand ... ten thousand, hundred thousand, million none how many ...? count, count (up) to, count on (from, to), count back (from, to) forwards backwards count in ones, twos, fives, tens, threes, fours, eights, fifties, sixes, sevens, nines, twentyfives and so on to hundreds,
thousands equal to equivalent to is the same as more, less most, least tally many odd, even multiple of, factor of factor pair sequence continue predict few pattern pair, rule relationship, next, consecutive $>$ greater than < less than \geq greater than or equal to \leq less than or equal
to Roman numerals integer, positive, negative above/below zero, minus negative numbers
formula divisibility square number prime number
ascending/descending order Place value ones tens, hundreds digit one-, two- or three-digit number place, place value stands for, represents exchange the same

Links to prior/post learning
Year 4
To count in hundreds and twenty-fives.
To count in thousands
To count in thousands, hundreds, tens and ones.

To use an understanding of place value to count.

To understand place value in a 4-digit number.

To compare and order numbers.
To compare and order 4-digit numbers.
To make number patterns (100, 10, 1 more and less)

To make number patterns (4-digit numbers).

To count in sixes, sevens and nines.
To round numbers to the nearest 1000.

To round numbers to the nearest 10 100 and 1000

To round numbers to estimate.
To round numbers to estimate

Curriculum Map- Maths Year 5

		To know there are 10 hundreds in one thousand To know that numbers can be rounded up and down To know that if there is a 5-9 digit in the place column, the number is rounded up to the nearest $10 / 100$ e.g. 76 rounded to 80 To know that if there is a 0-4 digit in the place value column, the number is rounded down to the nearest 10/100 e.g. 72 rounded to 70 To know that numbers can be represented using place value charts To understand the $100,000 \mathrm{~s}$, $10,000 \mathrm{~s}, 1,000 \mathrm{~s}, 100 \mathrm{~s}, 10$ s and ones structure of 5 digit numbers can be used to support addition To know that numbers can have the same digit but placed in different positions and represent different values To know that numbers can increase and decrease To know that numbers can be rounded to the nearest ten, hundred, thousand, ten thousand, hundred thousand		

Curriculum Map- Maths Year 5

Chapter 2- Whole numbers: Addition and Subtraction	To add using the 'counting on' strategy with concrete materials and number lines. To subtract using the 'counting backwards' strategy with concrete materials. To add numbers within 1000 000 using rounding and concrete materials. To use addition and subtraction to solve comparison problems with numbers to 1000000. To add numbers within 1000 000 using the column method of addition. To subtract using the column method, number bonds and number discs using numbers to 1000000. To add and subtract using number bonds as a key strategy using numbers within 1000000. To consolidate and refine addition skills and place-value knowledge to solve addition problems.	To know = means the same as To know + means that you are combining two or more numbers to find a total To know that - is the inverse of + To know that + is the inverse of - To know that you can find the total by counting on To know the total is combining two or more amounts To understand that the total will be the largest number. To know that addition can be done in any order To know - means that you are finding the difference between two amounts To know that you can find the difference by counting back To know that subtraction always starts with the whole number To understand that the answer will be fewer than the whole number To know that if there is more than 9 in a column that needs to be renamed e.g. 11 ones becomes 1 ten and 1 one	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? How many more is ... than ...? How much more is ...? Subtract take away how many are left/left over? how many have gone? One less, two less, ten less ... one hundred less how many fewer is ... than ...? How much less is ...? difference between equals is the same as number bonds/pairs/facts missing number tens boundary, hundreds boundary, ones boundary, tenths boundary inverse	Year 4: To find totals and sums. To add without renaming. To add with renaming (in the ones column). To add with renaming (in tens and ones). To add with renaming (in hundreds, tens and ones). To add using mental strategies (making tens, hundreds and thousands). To add using mental strategies. To find the difference. To subtract without renaming (column subtraction). To subtract with renaming (in tens and ones). To subtract with renaming (in hundreds, tens and ones). To subtract with renaming (in hundreds, tens and ones). To subtract with renaming. To subtract using mental strategies. To solve addition and subtraction word problems. To solve word problems (addition and subtraction). To solve multi-step word problems.

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

		regrouping, using the column method as the key strategy To find thousands, hundreds and tens in a 4-digit number using concrete materials. To divide 3- and 4-digit numbers by 1-digit numbers, using number bonds and long division as the key methods. To divide 4-digit numbers by 1-digit numbers, using number bonds and long division as the key methods. To divide 3-digit numbers by 1-digit numbers, using long division, short division and mental methods, that give rise to remainders.			To multiply 3-digit numbers. To divide 2-digit numbers. To divide 3-digit numbers. To divide 2-digit numbers with remainders To divide 3-digit numbers. To divide 3-digit numbers with remainders To solve multiplication and division word problems. To solve multiplication and division word problems (multi-step) Year 6: To multiply numbers by multiples of 10; to use number bonds as a key strategy in multiplication. To multiply 3 - and 4-digit numbers by 2-digit numbers without regrouping or renaming; to use both number bonds and the column method as key strategies. To multiply 3 - and 4-digit numbers by 2-digit numbers without regrouping or renaming; to use both number bonds and the column method as key strategies. To multiply 3 - and 4-digit numbers by 2-digit numbers with regrouping and renaming; to use number bonds and

Curriculum Map- Maths Year 5

					To use the bar model heuristic to solve word problems involving multiplication and division. To solve word problems using division as the main strategy; to use pictorial representations to support word problems. To solve word problems involving multiple operations, including multiplication and division. To find common multiples in real-life situations; to use common multiples in tandem with knowledge of time. To use common multiples to solve problems; to organise mathematical thinking into tables and lists. To find the largest common factor of 3digit numbers; to use multiplication and division to find largest common factors. To find common factors using concrete materials. To use prime numbers to create other numbers; to explore prime numbers above 100. To explore prime numbers using concrete materials; to identify prime numbers using multiplication or division
	Chapter 4- Whole Numbers:	To solve word problems involving multiple operations; to identify the operation needed to carry out the plan.	To know that some problems have more than one step To know that you need to make a plan to help to solve the word problem	addition add, more, and make, sum, total altogether double near double half, halve one more, two more ... ten more ... one hundred more how many more to make ...? How many	Year 4: To solve multiplication and division word problems (multi-step)

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

		subtract fractions from whole numbers. To subtract fractions where the denominators are not the same; to use bar models as a key strategy for subtracting fractions. To subtract fractions and mixed numbers from mixed numbers with different denominators. To multiply fractions by whole numbers creating other fractions, mixed numbers or improper fractions. To multiply fractions by whole numbers where the product is an improper fraction or mixed number. To multiply mixed numbers by whole numbers, creating larger mixed numbers. To multiply mixed numbers by whole numbers in multi-step word problems.			To add and subtract fractions with different denominators; to add and subtract mixed numbers. To multiply fractions using pictorial representations and abstract methods. To determine if the commutative law applies to fractions; to multiply fractions using concrete materials and pictorial representations. To use concrete materials to understand and solve the multiplication of fractions; to simplify equations using pattern blocks. To divide a fraction by a whole number; to use pictorial representation to divide whole numbers into fractions. To divide fractions by whole numbers using concrete materials and pictorial representations; to divide fractions when the numerator and divisor are not easily divisible. To divide fractions by a whole number; to use pictorial representations to support division

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

		To add and subtract decimals; to find number pairs that add up to 1 . To add and subtract the perimeter of an object using decimals. To round decimals to the nearest whole number; to round numbers to nearest tenth.	You must then multiply the numerator by the same number To know that whole numbers can be divided and the product can be shown as a decimal To know that 0.001 is 1 thousandth To know that 0.4 can be 4 tenths and 40 hundreths To know that decimals can be converted to fractions To know that decimals can be converted to fractions with the same denominator To know that fractions can be converted to decimals and they can be ordered To know that decimals can be added and subtracted To know that when adding decimals, we rename in the same way as adding whole numbers To know that when we are subtracting decimlas, we rename is the same way as subtracting whole numbers		Year 6: To read and write decimals to thousandths; to use concrete materials to represent decimals. To divide whole numbers by larger whole numbers; to use Base 10 materials to represent tenths, hundredths and thousandths. To divide whole numbers that give rise to decimals; to calculate decimal fraction equivalents using long division To convert fractions into decimals using bar models and long division. To write fractions as decimals; to use long division as the key strategy for turning fractions into decimals. To multiply decimals by whole numbers using partitioning or the worded method to help find the solution. To multiply whole numbers that include a decimal by other whole numbers; to use partitioning and the worded method as key strategies. To multiply decimals by whole numbers, including regrouping and renaming. To multiply decimals by whole numbers using a variety of methods; to

Curriculum Map- Maths Year 5

		To know that adding decimals can be linked to adding money To know the number bond knowledge can be applied to finding pairs of decimlas e.g. 1 and $9,0.1$ and 0.9 To know that decimlas can be rounded to the nearest tenth, hundreth or thousandth		use the heuristic 'making a list' to help solve a problem. To divide decimals using number bonds and number discs as the key strategies. To divide decimals using bar models, number bonds and long division as key strategies, including regrouping and renaming. To multiply decimals by a 2-digit whole number using number discs and the column method. To divide decimals by 2-digit numbers using number bonds and the worded method. To divide decimals by 2-digit whole numbers using number bonds and the worded method.
Chapter 8- Percentages	To compare quantities; to compare fractions, decimals and percentages; to convert fractions to decimals and percentages. To convert values of an amount into percentages; to convert fractions into percentages. To convert values of an amount into percentages; to convert fractions into percentages.	To know there is 100% in a whole To know that fractions and decimals can be converted into percentages To know that \% is the symbole for percent To know that $7 / 10=70 / 100=70 \%$	fraction, proper/improper fraction equivalent fraction mixed number numerator, denominator equivalent, reduced to, cancel equal part equal grouping equal sharing parts of a whole half, two halves one of two equal parts quarter, two quarters, three quarters one of four equal parts one third, two thirds one of three equal parts sixths, sevenths, eighths, tenths ... hundredths, thousandths decimal, decimal fraction, decimal point, decimal	Year 6: To find the percentage of a whole number using division and multiplication; to use bar modelling as a pictorial approach to calculating percentage. To find the percentage of a quantity; to use bar model diagrams to support the division and multiplication of numbers towards the percentage. To find the percentage change in an amount over time; to calculate the percentage change where the number gives rise to a decimal.

Curriculum Map- Maths Year 5

			place, decimal equivalent proportion, in every, for every percentage, per cent, \%	To use percentage, bar models and fractions to compare amounts.
Chapter 9Geometry	To know the names and qualities of acute, right, obtuse and reflex angles. To measure angles using a protractor. To draw, measure and add angles using a protractor. To measure angles using a protractor; to identify two angles which add up to 180 degrees on a straight line. To investigate angles that, when combined, make 360 degrees. To draw angles using a protractor. To draw lines and angles with a high level of accuracy. To describe the sides and angles of both rectangles and squares. To investigate the angles of various quadrilaterals,	To know that perpendicular lines meet at a 90 degree angle To know that parallel lines are lines that are the same distance apart and never meet To know that parallel lines are lines travelling in the same direction To know that a vertical line is a line that goes up and down To know that a horozontial line is a line that goes from side to side To know that some 2d shapes have parallel lines To know that nets can make 3d shapes To know that an angle is a figure formed by two lines To know that when two lines join it creates an angle To know angles can be on the inside or outside of a shape To know that a right angle is exactly 90 degrees To know the names of different angles- right, actute, obtuse	Shape, pattern, flat, line curved, straight round hollow, solid sort make, build, construct, draw, sketch perimeter centre, radius, diameter surface angle, right-angled congruent base, square-based size bigger, larger, smaller symmetry, symmetrical, symmetrical pattern line symmetry reflect, reflection axis of symmetry, reflective symmetry pattern, repeating pattern match regular, irregular 2-D shape 2-D, two-dimensional corner, side point, pointed rectangle (including square), rectangular, oblong rectilinear circle, circular triangle, triangular equilateral triangle, isosceles triangle, scalene triangle pentagon, pentagonal hexagon, hexagonal heptagon octagon, octagonal quadrilateral parallelogram, rhombus, trapezium, polygon right -angled parallel, perpendicular x-axis, y-axis, quadrant 3-D shape 3-D, threedimensional face, edge, vertex, vertices cube, cuboid pyramid sphere, hemisphere, spherical cone cylinder, cylindrical prism, triangular prism tetrahedron,	Year 4: To identify types of angles. To compare angles. To classify triangles. To classify quadrilaterals. To identify symmetrical figures. To draw lines of symmetry. To draw symmetrical figures. To make symmetrical figures. To complete symmetrical figures. To sort shapes. Year 6: To investigate opposite angles; to use prior knowledge of angles to solve problems involving angles. To solve problems involving angles using the bar model heuristic; to solve problems involving angles without protractors.

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

I		To know that in a symmetrical figure, one half is a reflection of the other half To know that shapes can be sorted in different ways To know that a reflex angel is more than two right angles To know that angles can be measured To know the symbol for degrees and know it is the unit for angles To know that angles can be added together To know angles on a straight line add up to 180 degrees To know that the angles in a circle are equal to 360 degrees To know that the sides of shapes can be measured To know that angles at a point add up to 360 degrees To know the difference between regular and not regular polygons To know that a regular polygon is a polygon with all sides of equal length and all angles equal		
Chapter 10- Position and Movement	To name and plot points. To describe the position of a shape following a translation. To describe movements and reflecting shapes.	To know that you describe the position of an object To know that the x axis is horizontal To know that the y axis is vertical To know that points on the axis are called co-ordinates To know that co-ordinates can be plotted on the axis	Position and direction position over, under, underneath above, below top, bottom, side on, in outside, inside around in front, behind front, back beside, next to opposite apart between middle, edge centre corner direction journey, route left, right up, down, higher, lower forwards, backwards,	Year 4: To describe position. To describe position. To plot coordinates. To describe movements.

Curriculum Map- Maths Year 5

	To describe the movement of a 2-D shape when reflected. To reflect a shape more than once.	To know that polygons can be plotted on a graph To know that when a shape is moved up or down, it is called a translation To know that when a shape is translated, it only moves and it doesn't change in any other way To know that shapes can be reflected more than once	sideways across next to, close, near, far along through to, from, towards, away from clockwise, anticlockwise compass point north, south, east, west, N, S, E, W north-east, northwest, south-east, south-west, NE, NW, SE, SW horizontal, vertical,	To describe movements (coordinates). Year 6: To represent negative numbers on both vertical and horizontal number lines. To describe the positions of objects on a coordinate grid; to use x and y axes to determine the position of objects on a grid. To describe the position of points using coordinates on a grid. To draw polygons on a coordinate grid; to recognise polygons on a coordinate grid. To describe the translation of shapes on a coordinate grid.
Chapter 11Measurements	To convert units of length. To convert units of length, including centimetres and metres. To convert units of length. To solve problems by converting units of length. To convert units of mass.	To know that mass is the quantity of matter in an object To know that some objects are heavier/lighter than others To know that objects can be ordered based on their weight To know that scales can be used to measure the weight of an object To know that mass can be measure in g and kg To know 2 or more sets of objects can be compared using <>=	measure measurement size compare unit, standard unit metric unit, imperial unit measuring scale, division guess, estimate enough, not enough too much, too little, oo many, too few nearly, close to, about the same as, approximately roughly just over, just under Length millimetre, centimetre, metre, kilometre, mile length, height, width, depth, breadth long, short, tall high, low wide, narrow thick, thin longer, shorter, taller, higher ... and so on longest, shortest, tallest,	Year 4: To record amounts of money. To record amounts of money. To compare total amounts of money. To round to the nearest pound (whole number). To solve money problems (addition and subtraction). To solve money problems (multiplication).

Curriculum Map- Maths Year 5

		To convert units of mass, including grams into kilograms. To convert units of mass. To convert units of mass, including kilograms and pounds. To convert units of time. To convert units of time from days into weeks and months. To convert units of time. To solve problems by converting units of time. To convert units of time. To read the temperature on a thermometer	To know that scales have markers to show the mass of an object To know that length is measured from end to end To know that length can be measured by different objects To know that rulers can be used to measure how long/ tall an object is To know that objects can be ordered from shortest to tallest To know that length can be measure in cm, m and km To know 2 or more sets of objects can be compared using <>= To know that the most effective way of measuring a line, is to make it straight To know there are 100 cm in a metre To know there are $1,000 \mathrm{~m}$ in a km To know that containers can be full, half full etc. To know that capacity is the amount something can hold To know containers can have the same/different capacity but different volumes To know that objects can be ordered based on their capacity	highest ... and so on far, further, furthest, near, close distance apart ... between ... to ... from edge, perimeter area, covers square centimetre (cm2), square metre (m 2), square millimetre (mm 2) ruler metre stick, tape measure Weight mass: big, bigger, small, smaller weight: heavy/light, heavier/lighter, heaviest/ lightest kilogram, half kilogram, gram weigh, weighs, balances heavy, light heavier than, lighter than heaviest, lightest scales Capacity and volume litre, half litre, millilitre capacity, volume full empty more than less than half full quarter full holds, contains container, measuring cylinder pint, gallon Temperature temperature degree centigrade Time time days of the week, Monday, Tuesday ... months of the year (January, February ...) seasons: spring, summer, autumn, winter day, week, weekend, fortnight, month, year, leap year, century, millennium birthday, holiday morning, afternoon, evening, night bedtime, dinner time, playtime today, yesterday, tomorrow before, after earlier, later next, first, last noon, midnight calendar, date, date of birth now, soon, early, late, earliest, latest quick, quicker,	To solve money problems (comparison). To estimate amounts of money To tell the time on a 24 -hour clock. To convert between minutes and seconds. To convert between hours and minutes. To solve time problems. To convert between units of time. To solve word problems (duration). Year 6: To convert common measurements into metres, centimetres and millimetres. To convert units of measure into different units; to use knowledge of decimals and fractions to help convert units. To convert metres into kilometres as units of measure. To convert units of mass from grams to kilograms using decimals and fractions.

Curriculum Map- Maths Year 5

			To know that volume is the space covered by an object To know that volume is measured in ml and I To know 2 or more sets of objects can be compared using <>= To know that scales have markers to show the volume To know that 200 g is the same as 0.2 kg To know that mass can be rounded to the nearest whole To know that 1.2 kg is the same as 1 kg and 200 g To know that 3.5 kg is the same as $31 / 2$ kg To know that $100 \mathrm{ml}=0.11$ To know that $10 \mathrm{ml}=0.011$ To know that 152 cm is the same as 1.52m To know that $10 \mathrm{~cm}=0.1 \mathrm{~m}$ To know that $1 \mathrm{~cm}=0.01 \mathrm{~m}$ To know that 1.2 m is the same as 1 m and 20 cm To know that length can be rounded to the nearest whole To know that $10 \mathrm{~mm}=1 \mathrm{~cm}$ To know that $1000 \mathrm{~m}=1 \mathrm{~km}$ To know that $100 \mathrm{~m}=0.1 \mathrm{~km}$ To know that $10 \mathrm{~m}=0.01 \mathrm{~km}$	quickest, quickly slow, slower, slowest, slowly old, older, oldest new, newer, newest takes longer, takes less time how long ago?, how long will it be to ...? How long will it take to ...? How often? always, never, often, sometimes usually once, twice hour, o'clock, half past, quarter past, quarter to $5,10,15 \ldots$ minutes past a.m., p.m. clock, clock face, watch, hands digital/analogue clock/watch, timer hour hand, minute hand hours, minutes, seconds timetable, arrive, depart Roman numerals 12-hour clock time, 24-hour clock time	To convert units of time from minutes to hours; to represent time using 24hour notation.

Curriculum Map- Maths Year 5

Curriculum Map- Maths Year 5

	To make an estimation of area in kilometres.	To know that perimeter can be calculated using a ruler To know that shapes can have the same perimeter but look differently To know that shapes can be joined to form a new figure To know that scale diagrams can be used to find the perimeter To know that multiplication and addition can be used to find the perimeter To know that area is recorded as cm2 To know that figures can be split to find the area To know that figures can have the same area but look different		To find the area and perimeter of rectangles; to calculate perimeter using the known area and vice versa. To find and calculate the area of a parallelogram; to use concrete materials and prior understanding of area to construct a formula for the area. To use prior knowledge of area to determine and solve the area of a triangle; to use and apply the formula for the area of a rectangle to solve problems involving triangles. To calculate the area of a triangle using a formula; to calculate the area of a triangle in multiple ways. To use multiple methods to solve the area of a triangle. To find the area of a parallelogram using an understanding of triangles; to use concrete materials to find the area of a parallelogram.
Chapter 13- Volume	To understand the volume of solids. To find the volume of 3-D shapes. To find the volume of solids. To find the capacity of a cuboid.	To know that volume is the amount of space a 3d shape takes up To know a cubic cm block takes up 1 cubic cm. This is written as $1 \mathrm{~cm}^{3}$. To know that you can work out the volume of a shape by multiplying height \times width \times depth To know If the shape is made of cubic cm blocks, you can count the cubes to find the shape's volume. To know that shapes can look different but have the same volume	square centimetre (cm2), cubic centimetre (cm3),	Year 6: To be able to find the volume of cubes and cuboids To be able to estimate the volume of cubes and cuboids, and calculate volume using a formula To be able to calculate, estimate and compare the volume of cubes and cuboids

Curriculum Map- Maths Year 5

